
AN AIITOMATIC  CO1)lC  SYNTIIICSIZICR

W.K. k!cinhoh
jet ]’l”OpLlkiCMl  1,nbommy

California lns[i[o[e of ‘Jkchnology
I’asarlcna, California91 109

A?2Ma!a
‘1’his  papcc clcscribcs the design and architectorc of an
au(omatic code synthcsimr  we call the A(W. ‘1’hc inpul to
the A(K; is a list of facts that must hold for the g,cncratcd
cmtc, rtlong with domain-specific knowledge (design rules
and pat(erns).  ‘1’hc fm.ts are writ (cn by the application pro-
grammrx,  ‘l’he design ro]cs arc provirkd by the systcm
alchitcz.ts. ‘1’hc  ACCT derives and emits code, corrently
C++-,  using an cxperl system to Wrform  the reification.
‘J”hc A(Xi is in daily USC, suppm[ing  dcvclopmcnt of m is-
sion-cri(ical  software. It produces about 40% of a
15(JKl ,OC product, replacing approximately onc staff pro-
grammer position,

1 JV1’ROlNJ(2”I~

]Iackgrouncl

“J’his paper dcscribcs an atltomalic COCJC synthesizer called
the AC(;. ‘1’hc  A(W is par( of an ongoing effort within the
7,1}’SIM  project at JP1, to increase programmer productiv-
ity and software product reliability.

‘1’hc charter of the XII’SIM  project is to crcatc high-pcrfor-
mancc sparxcraf(  end atom. A 7,11)S1  M emulator consists
of a nombcr  of component models, each with a fol I-fidclit y
intcrf acc and arlitrary  COCJC (usually C++) to implement
the intcrfncc.  ‘J’hc models are put into the ZII’Slh4  fran~c-
work, which provides mul t i-processor schcdoling, runt imc
model crcfition, intcrcmncdion  establishment and break-
down, graphical and line-oriented user interfaces, and so
on. ‘1’hc usoal purpose of a 231>SIM  cnm]ator is to exccutc
unnmdificcl  flight software binaries on the emulator such
that the software behcivcs just as it would on flight hard-
ware.

Motivation

‘1 ‘hc goal of the work wc dcscribc here is to incrcasc.  pro-
granlmcr Jmxloclivity in two ways:

* ‘J’hc programmer need only provide a concise list of
facts that clcscribe  the needed code, ratJlcr than write
the CCKIC itself; and

e ‘1’hc.  St ruc.t urc of the facts is designed IO al IOW a nun)-
bcr of possib]c implementations, so that significant
redesign of the product may bc accomplished by al tcr-
ing ol)ly the design roles, rather than manually alter-
ing all COCJC impacted by the rcclcsign.

‘J’hc programmer provides a concise list of facts that apply
10 the cork  that is going to be gcncratcd. ‘J’hc tool then

‘1’hc  IV(IA dmcrikd  in this palwr  \vas  cnrricd  OUI al Ihc JCI  l’roj)ulsim
I ~]hor;]l(my,  ( ‘nlifm)ia  lr]s[i(u(c  rrt_  ‘Icchno]ogy, undc.r  8 cor)traci  ~vi{h  Ihc
Nnlinllill  Acrolmuiim  aTId Sp:Icc  A(ll]]irlis(ralio]).

uscs those facts and a Jwc-existing set of design roles to
write the code for the programnm.  I’mductivity  is
increased bccausc  (a) the programmer only writ cs facts
about the COCJC to be gcncraled, rather than the code itself;
and (b) the programmer need not bc intimately knowl-
edgablc of the design roles; ancl (c) the crier rate is lower
and U1OS ICSS time is reqoired for bog fixing.

‘J’hc l~rogratl~ll~cl-~ )rok’i(lc{l  facts arc as much as possible
indeJxmdcnt  of the clcsign ro]cs  u SC.CI to crcatc the outJmt
code. It is thus prac[ical  to inlJienlcnl  a significant rede-
sign simply by rewriting the design rules. ‘J’he.  code can
thus be evolved lCSS cxpmwivcly and more reliably, to
mcd changing rcqo iremnts or to u(ilim improved tcch-
nologicsl.

Related work

S ynthc.sis kzhniqucs  can be applied to the whole. software
life-cycle [SctliffX],  outlined below.

* Rcquircmcnt - A description of the dcsi red behavior is
used to crcatc a specification;

* llxign  - A software clcsign is synthesized from a
sJwcification;

* Ill]l>Jcll~cl~tatioll  - Chic is synthcsi?cd  from a design;

* Vcriftcntion  - ‘Jest cases m gcncratcd  automatically;

* Maintenance - Maintcnancc is cased bccausc design
rules arc captmd.

Onr work spans all but the vcriftcation  phase clcscribcd
above, though the different i at ion bet wrxm phases is differ-
ent: ‘J’hc  A(Ki uscs facts aboot desired code and dcsi.gn
roles as input, and emits an it~lj)lclllclltatioll.  ‘J’hc facts
dcsclibe athibutcs that the code must Jlavc, bot do not
specify behavior or design: tbosc arc cap[orcd in the
design rules. so they may bc easily altered.

Ycllin and Strom [Ycllin93] clcscribe  a synthcsim that
Cc’catcs adaJM ors bet wecn conlJx3ncnts that arc functional ]y
compatible bot are not type conlJ>atiblc. Our ACG pro
vidcs this caJJabitity,  but it can also bc configured to cause
tyJX conlJlatibility  Via inheritance instead of aclaJ>tors,
should that be desired. in either case, the facts and code
writ [cn by tbc prqyatnmcr  need not be modified.

Synthesis should not be confoscd  with automatic cork

1. Wc have used this caJ)abilily several times, and it
worked as advcriiscd.

-1-



,

gcncmt ion, which translates a graphical or textual }lighcr-
lcvcl language. into lower-lcvc] code. ‘1’his  was a popular
topic son)c. years ago. SW e.g. [J/azdow  1982,] as an cxan]-
p]c.

~ his[orv  of IhC AC{;

‘J ‘IIC A(~{i was imp]cmcntcd  because wc observed that a
significant amount of the code in a previous version of our
product, lboLlgh complicalcd,  was essentially pro-forma
once the clcsign mlcs were understood. Unfor[unatcly  the
design nllcs  were (and still arc) sofficicntly  complicated
that it often took days of struggling to Jcarn thcm WC]]
cnottgh to app] y thcm 1, and the application itself was
tcd ious and error-prone. Worse yet, each programmer
went thoigh  the cycle a number of times, bczausc each
soft ware component crcatcd by the programmer required
another application of the design mlcs.

Our initial goal was to write a set of dcvclopmcnt prmc-
durcs  that cmbod icd the design rldcs, so that the progran~-
mcr would bc aided in the correct application of the design
roles. Our infcnt was that the prcyymmcr  would bc
guided towards the cr’cat ion of a SC( of facts abOLlt  tbc code
to bc writ [en, ancl Ihcn would usc the dcvclopmcnt procc-
dLlrcs (SIIWtllJ’Cd as a series of II; . . . l’ll}iN . . . lIISli  . . .
liNl)ll; ILIICS  ill proc~dura] handbook st ylc [Wlcringa92]),
in Colljmction with the facts to write the code.

]t SOOJI bccan~c c]car that the proczdurcs thcmsc]vcs  woLIk]
bc quite cxtcnsivc and complicated, so wc comidercd
writing a tool that dcvclopcd  customimd  procedures. I’lIc
tool was to take as inpLlt certain facts about the code to bc
writlcn, automatically c]ctcrminc  which proccdLwcs were
applicab]c.,  and finally emit a customimd  prmcdurc  for the,
programmer to follow. Wc discussed the MC of an expert
system as tbc basis of this automatic proccdurc synthesis
tool.

];inally (a fcw clays later), wc observed that if wc coLlld
automatically derive the procedures, perhaps we could
automatically apply thcm as WCJI,  ‘J’hc atlswcr to this ques-
tion tmmd  out to I-m “yes”. and the A(W as described here
was born.

QLttlin~ of the LJ~

‘l”IIc fo]lotiillg  swtion  dcscribcs the software prodLlct to
which the. ACG was applied. Wc ncx t provide an ovcrvic.w
of tbc opcrat  ion of the ACG, then we exam inc it’s input
ancl output products in some detail. Next wc discuss the
Cl ,lt’S expert systcm that W7C used as the basis of the ACG
infcrcmx  engine, and the architcctorc of our Cl ,11’S nllc-
sc[. 1 ‘i n al I y, wc present some mcasu rcmcnts as to how

—

1. l’rogranmcrs  more than onc.c rcferrc.d  to the pro-
mss as “painful”.

much of the total body of COCIC  is actoally gene.rated by the
ACG.

Y, J1’SliVJ  Architcctllre

‘1 ‘his SCCtiOII dcscribcs  those ~,1 I)S1h4  LiL’C]likXtLlra]  details
that shoulc] bc understood in order to case reading of this
paJwr.

7J1’Slh4 consists of a Illlmbcr of cwlymrrltl.$,  connc,ctcd
via strongly-t ypcd sp/ices. 1 ;ach component as a”1 c1
[Ostc@31 hcrpr’ctcr  wappc.d in a class called Sitn7t/.
lntcrpletcrs  communicate. with amongst thcmsclvcs via a
conncctionlcss  R1’C-like protocol mechanism, embodied
in a ‘It]  command callc41 sil~].(cml.

Component - A componcn[  is an object. augmented
with ccrlain  mandatory interfaces tILat support compo-
nent creation, registration, collltl~~ll~icatioll, and clclc-
tion. If a componcn(  has certain optional intcrfacm
that connect i[ with the emulation schcdulcr.  it is also
a nmdcl, Components ate named and registered in a
central database.

Sp]icc - A splice is a high-pcrfomancc  component
in(crconncction.  llnlikc  simscnd,  sp]iccs arc point-to-
point and mlll]wtioil-oriclltui,  Splicm arc strong] y-
t ypcd, so syntactic correctness of connect ions is
cnforccd  by the 7,11)S1 h4 framework. 1 {ach splice as a
master, which originates i/o mqocsts, and a slave,
which responds to the rcqLlcsts. In RPC notation, the
master is the client, and the slave is the server.

Sim’lcl - Sim’lcl is a C++ wrapper wc place around
‘Jcl that provides an intcrfacc more compat iblc with
C+-+ dcvclopmcnt, ant] is also augmented to make ‘IC1
safe in a ~l~tllti-tl~r”cadc.cl cnvironme.nt.  }iach instance
of Sinr’lcl  has a name ancl is rcgistcmd  in a central
clatabasc.

simscncl - Sin]scnd  is LISCCI  to cxccutc a “lkl command
on a named Sinr’Jcl object. It may bc use.c] by any
Sim’lcl to cxcmtc  a command upon any olhcr Sim’lcl,
1( has lower performance than a splice intexconncc-
tion, bLlt since it CIOCS  not l’cqLlire sp]icc establislmcnl
machinery, it is more convenient to usc and is appro-
priate where performance is not critical. Note that
simscnd is not the ‘Jcl/1’k “send” command. “1’hc  lattcl
has subst ant ial[y lower pcrfomancc  but can con~nNl-
n icatc bet wccn ‘lcl interpreters that arc cxccLl t illg on
different machines. Simse.nd dots not operate across
the network .

ACG OVJXVIII;W

‘J’hc A(X3 consists of two software components: a specifi-
cation compiler, which translates specifications into facts
for the infcrcncc engine; and tbc. infcrcrm  engine, which
synthcsiy,cs  C++ code from the facts and roles.

2-



. .

‘1’hc  specification compiler takes as input a file containing
hm~an-rcnclablc  facts about the component being built.
m)d emits facls formatted as input for the inference engine.
No infcremz  is performed at this point: the contents of the
input file d i rcct 1 y imp] y the contents of the oulput  file. We
avoid infcrcncc in this phase so that the system design
rules do not bccomc scattcrcd amongst the various ACG
subsystclns.

‘1 ‘he infc.rcncc  engine. takes as input the oLl[pLl  t of the spec-
ification compiler, and produces C++ source  cock. ‘1’hc
per-component facts arc combined with systcm-wiclc  facts
and mlcs, using (3 ,1}’S [Rilcy91 ] expert system tool to
perform the inferences.

‘1’hc following steps smnn~ari7c  a complete ACG usage
Cycle:

a 1. ‘1’lIc  dcvclopcr pLlts component specifications into
<fi IC>.nspcz

* 2.< file> .nspccis proccsscdby factgcn.sh,andpro-
chm.s <fi Ic>.nfacts.  Note this translation does not use
any input other than <file>.nspcc.

8 3. ‘1’lIc infmcnm. engine, filcgcn.sh,  prmcsscs
<fi Ic>.nspec and gcncratcs a number of C+ + files. “J’hc
prwessing  ma y cause a number  of other nspcc fi lcs to
be read to provide tbc information rcqu ircd to gcncr-
atc the C++ code.

AC!X!_Nl!U.1’

‘J ‘hc spwificat  ions are struchwcd as a comprom  isc bet wccn
c,aseo  finput anclintcrprctati on byhuman  s,anclcascof
processing by software tools. Our first  inclination was to
usc a notation that did not imply any particular processing
languag,c.. It soon bccatnc clear that if we were to offer a
powcrfu  1 input not at ion, we’d either have to invent our
own language, or use an existing one.

We sclcctcd ‘lc1 as our specification input language,
became  (a) it’s adequate; and (2) wc already depend on it
ml have some ski II in its application 1. Some dcvclopcrs
have used this to their advantage, by writing shorthand
specification items, which expand into perhaps several
actllal specification items.

1 ;ach spccificat  ion item has a comment field, which is
inserted itlto the fact database along with the fact itself,
‘J’hc  comment is used for several pmposcs. };or certain dat a
items (e.g. C++ function and variable declarations and
dc.finitions)  it becomes the C++ comment asscwiated  with
tbc item in the output C++ code. 1 jor others, it forms the
basis of a help-text system. I;inally. all such comments arc

1. Wc have no! rcgmtted this decision. Jn fact it still
appears to have been the right thing to do.

fodder for automat ic clocumcnt gcncrat ion2.

‘I here arc many spccificat ion items that maybe (and some
that must bc) used. ‘1’hc following lists some of the more
significant ones., and what code is gcncratcd  by the items.

‘1’hc name of the component - ‘1’hc name is USCC1 in
many places, inducting the C++ class clcclaration,
function definitions, and rcgistiation of individual
imtanccs  of the componcn[  type.

Member functions  ancl variables - ‘J’hc A(Y3 must crc-
a(c the C++ class dcclafalion. as it controls the archi-
tecture up to and beyond (I)c  basic class inheritance
structure. As such. all member data and member func-
tions must bc spccificc] to the ACG. ‘J’hat is the pri-
mary pmposc of th is spccificat ion item. A side effect
of this itcm is that the AC(i can be used to create dtx:-
umcmtat  ion dcscribi  ng each member funct ion and data
itcm, which has proven useful.

Splice t ypcs and names - Components may include
sp]icc caJJability. ‘J’his  specification item specifics tho
various splice types to be implemented by the conlpo-
ncnt, ant] the name of each pml of each type. “1’his is
used to crcatc a large amount of interface COCIC.

Simsct  - Simsct is a lcl command that provides
access to component C++ vatiablc.s. ‘1’hc ACCJ can
generate all code to do so for most data tyJ)cs. Some
developer assistance is required for s(rllcturccl data
i(cms.

AC~ lnpul~xanlpl~

“1’hc following example. shows a data specification itcm of
low complcxit  y:

c{
NC)  II- b] oc:king Sin[Tc:J Jc)c:k .
I  f  Sjm’1’cl  ] SI-I’  t  1  c)c:kecl, 1 c)ck i t
arrci r e t . u r n  zero. 1 f i t i s 1 c)c:kcci,
ret urIl nc)I1- Zcrc) .
} fcic!C] ] oc:kp t hen loc:k pLIb] i c st_:It i c:

“i nt  FUNC”  “v:] ci” “vc)i  c l ”  norrna]

l-lot virt.  Lldl

‘1’hc first  word following the comment list is always the
type of the specification item being clcclarccl, in this case a
function. ‘1’hc following parameters dcscribc the itcm in
detail sufficient to allow generation of the. ncmssaty  C++
code.

‘]’hc  above example is friirly simple, in that the translation

2, Wc have noted that plogranln~ers often initially
ncgkct  to fill in the cofnmcnt  field, thcJI  must go back
later and add the commcn(  so as to allow usc of e.g.
automatic dmLlnmlt gcncralion.

-s-



,.

.

is scmcwhal  obvious and trivial, Consicler,  however, the
following cxmplcs:

c {~’hc  C1’U  rcgi st. ers
uiI”1t16 o 31

C {~’h~ ] ~} qS~nlSf2~.]

uint16

1 hch of these cause the CCCN io

qSiIMC!~ ~{ rW

c {R(lc)}  r w

I of a significant amount of
code.’1 ‘be. fi ml c.auscs a simsct  function 10 be create.cl in the
nmdcl  (in this case a C1’11) that provides ‘Jcl access to the
r’cgis[cr away RIO..31 ], with read ant] write capability. ‘J’hc.
scconcl cxanlJic  aliases a parlicu]ar register (the 1(;,
instruc.tim ccmntcr), so the user does not need to rcmcnl-
bcr it’s numeric index’.

l%ch of these Jincs  causes pcrhaJn a dozen lines of C++ [O
be .gcncra(cc]. ‘J’Jlcrc  arc hundreds of variabJcs  that can be
acccsscc] in this manner. 11 y using the AC(; to crcalc the
intcrfacr. code, wc can ensure uniform range checking,
inpu~ type c.hccking, implcmcnlation styJc, and so on. O.h-
crwisc each prcygrammcr  would be rcqu ircd to do each of
these things indcpcnclcnlly. for each variable. liach
instance of such code would Jwoviclc another opportunity
for a mistake to be made,

l]y using tbc ACG to gcncratc  this COCJC, we gain in two
ways: (J) if a dozen or so lines of A(Y3 code arc cm-xx,

then Jlundrcds of lines of C++ code arc correct; and (2) if
wc clcciclc to i mplcmcnt  simsct diffcrcntl  y, we need only
change a fcw lines of ACG COCJC, rather than hundreds of
Jincs of C++ code.

&Q OUJ’JTTJ

Ql@ut prodllc&

‘1’hc AC(i emits a number of C++ header (“h”) and code
(“.(;”) film for cacb componcn(.  “J’hc name of each is
mechanical i y clcrivcd from the name of the COlllJ)OllCllt

ant] the pulposc of tbc contents of the individual file. ‘l’he
following cnujnc.rates the types of files written by the
AU;.

* Class dccJaration,  ‘J’Jlis  file must be automatically
gcncratccl, because some of the coding under the con-
ttoJ c)f the ACG requires that class members be
declared and that certain parent (s) arc sJxxificd,

* Component creation and deletion. l“his COCJC, much of
it boi Icrp]a(c,  is rcqu ircd to SUppOII  our COJIIJ)OIICIII

arch itcclurc. ‘1’hc code that registers comJ}oncnts  uJwn

-.

J. Wc have considered causing the act of declaring a
variable to also cause its simsct specification to be
asscrled, so all variables would be autonlatically
accc.ssibJc via ‘Jbl. We have not yet done so, for Jack
of time.

creation and unrcgislcrs.  uJJon deletion is boiterpla(c.
‘J”hc code to initiali~,c the comJ~oncnt is not boiler-
plate, as it may involve arbitrary code fragments,

Sim’lcl crcat ion ant] dclcti on. 1 iac.h comj)oncnt has a
‘Jkl intcrJJrctc.r, wraJJJwd in a class ca]kxl Sim”Jcl. ‘Jlis
fi Ic contains the COCIC t}lat bancllcs much of the. book-
kccJJing rcquit’ed of this design, ]t also contains code
that, for each component claw, creates a static Sim’lc 1
associated with that class that’s used to sJ~awn
instances of (he component class in the “excmJllar”
s[ylc  of e.g. Self [lJngar87]2.

SJdicc connection establishment.

installation of ‘Jcl commancls. It is tbc nature of “Jcl,
and so Sim’Jkl, that commancls that arc wri(tcn in C+-}
arc c1 ynam ical I y rcgistcrccl with the intcrpmtcr (as
opposed e.g. to a conlJ~ilc-time lookup table). ‘J’his J_ilc
contains the code that registers all “Jcl commancls, It
also contains code that, for each command, rcgis[crs
ttlC hCl])-tCXt  Of the COllllllallC]  \\’ith  the hC]J) sLlb-
Systcm  ,

Automatically -gcncratcd  ‘lcI commands. Sonic ‘ICI
com mancls,  e.g.  those t ha( are used for component
creation and deletion and those that arc used for splice
cst abl ishmcnt  ancl breakdown, arc automat ical I y
defined as WCII as automatically declared. ‘J’his  file
contains such clcfi nit ions.

OUtJ)Llt  tcchniqt~

‘1’hc bLl]k of the code generated by the A(W is created
using onc of foLlr techniques, cnumcratccl here.

@ IJircct code creation - l’his is the most J)owcrfu]  tcch-
niquc. An algorithm within 0 ,II)S  is used to con-
struct the code, using a combination of prcwcdLlral and
rule-bascc] techniques. ‘1’his method is rcscrvccl for
aJ~J~licat  ions wbcrc  the rcqu i reel code does not exhibit
a structure that may be cxJ>loitcd by sin~pJcr tcch-
niqucs.

* #t[lcfit~c/fliI~cltlclc  - ‘J’hc  ACG writes a file. that uscs the
C++ prcJmccssor  “#lclcfinc” to dctinc certain macros,
then uses “#inchlclc” to incJudc a file that becomes
customized  according to the clctlncd values. ‘J’his  tccll-
niquc is quite uscfu]  when the dcsirccl code JJroduc(  is
su fficicmtl  y regular, became the ACG need on] y cm i{.
the ncccssaly parameters, and bccausc  certain
changes may be in~plcmcntcd  by modifying only the
include file, rather than making another ACG pass.

2. ‘1’J~is is how wc avoid cxJJlicit central registration of
all component classes. “J’hc static Sim’Jcl registers
itself upon creation, thus aLltomatically  creating a list
of al 1 comJJoncnt  classes.

-4-



* Macro substitution - ‘l’he ACG has a simple macro
suhs( it ut ion capabi lit y, which takes as input a tcnl-
platc file, and emits the template with cmlain tokens
within the template replaced by ACC~-spccificcJ val-
UCS.  ‘J’his  is an early ACG feature ancJ has for the most
patl been rcphmd by the #define/#inchldc nmcha-
nism, bccausc the lat (cr is more powcrfnl  by vir(uc of
ils conditional constructs (#if . . . #cncJif)  and bclicr-
control lcd recLlrsivc macro evalu at ion, and the former
offcted no significant advantages with respect to the
lat (cr.

@ String substitution - This method is similar to macro
snbstituticm, but rather than using an input file and an
aUXiliat’y  macro sLlbslitLltion program, it is internally
implcmcntcd and operates on strings. We often usc
this 10 gcncratc  COCJC  fragments.

ACG  INlilil<liNC1i  }iNGINl\

Wc USCC1 the Cl ,11’S[Riley91  ] forward-chaining experl  sys-
tcm clcvelopmcnt tool, dcvclopcd  by NASA, to implement
the ACG infcrcncc engine. We first briefly dcscribc
Cl .11’S,  tlm wc dcscribc our use of Cl ,ll)S,  and finally
scmc coding gn iclcl incs that wc found useful.

IIricf dcscril)tion  of 0 ll)S-

Clips has been dcscribcd elscwhcrc in the li[craturc.  Wc
thns only briefly, informally, and incompletely describe it
to aid the rcaclcr in understanding this paper.

Cl ,11’S takes as input facts, and rules. ‘J’hc CI,IPS infcr-
C1lCC Cl@ DC C’CIWi@c] Iy 111 a~ChCS  thC  faCtS tO thC J’Llk  prCd i -

catcs, nncl for each rule that fully matches, the rule is
schcclulcd  for cvalnation. I’hc evaluation among ot}lcr
things may came olhcr facts to bc asserlecl and/or dclctecl,
modific.aticm of the matching facts, values to be assigmcl
to global variables, and i/o to bc performed.

A fact is an ordered list of values. “J’hc first value is the
type of the fact, and the remaining values together rcprc-
scnt the value of the fact. l~ach position in the list may be
given a name, thus provic]ing  something of a traditional
record cla(a stnlctLlrc.

A nllc  has a prcdicatc  (in Cl ,ll)S notation, the “lcfi hand
side,”, or 1,11 S), actions (the “right hand side”, or IUIS),
and salience. When the predicate of a ru]c is satisfied by
scmc set of fack, the ndc is scheduled for evalnat ion,
which wi I I cause the actions of the ralc to be exccwcd.
Salience clctcrmincs in part the order in which ndcs  schccJ-
uled for exccut ion arc executed: The greater the salience,
the earlier the cxecution$ all other things being equal.

]n csscncc, C] ,ll)S repeatedly identifies a rule that has a
predicate that can be satisfied by existing facts, then exc-
cntcs tbc actions associated with the ru]c.  If more than onc
rule is eligible. for execution, a conflict resolution nwcha-

nism is used, which SCICCIS  a IMIC by onc of several priori-
tization schcnlcs.

‘~, (Icsign  of the ACG mlcsct

‘J’hc ACG inferenm engine excretes in three distinct
phases, controlled by rule salience: reification; CO& emis-
sion; and o@lt file i!cration. ‘1’hc rcifica[ion is done once
for a given set of output products. COCJC emission and file
itcrat ion cmmr for each output fi Ic.

Reification consis(s  of inferring all facts that arc implied
by the initial facts and given rules, It is done first, and
once, so that COCJC  emission and file iteration (both irm-
vcrsiblc) do not have to bc back (racked. If wc al 10WCCI
facts to be asscrled d~lring code emission, ancl any of those.
facts could in~J>ly changes to previously-cmittecl COCIC,
backpacking woLl  Id be necessary. Wc have no mechanism
for such backtracking, and imagine it would be quite diffi-
cn]t to inlJl]cnlcnt,  so wc insteaci avoid the JJroblenl.

Wc used the Cl ,1!’S ndc-based notation to express most of
the cock emission algorithms, so some emission rLdcs
assert facts that control other emission rules]. Such facts
have names that make it clear that they are only to be used
for that spccialimd Jmrposc,  ancj by convention each is
restricted to apJ3earing  in a very fcw rules (tyJJically  only
onc mlc awcrls such a facl, and only rLllc uscs the fact in
it’s Jwcd icatc), OLlr goal was to allow the usc of rule-based
algorithms, yet to ensure that rules asscrkd  during  the
cmrsc  of code emission cmlcl not have impacted prcvi-
omly-cmitkd  code.

Wc would have Jmfcrmd to avoid ANY modificat  ion of
tbc fact database dLlring  COCJC emission. It would have then
bccomc  possible to implement an automated check for fact
modification dnring code emission. Ilowcver, Cl ,lt’S is an
exJ)crl systcm,  so its programming s(ylc  tends towards the
rLllc-bascd2.  It woulcl have Iwc.n  clifficult to inlJIJcnmlt the
COCJC  emission algorithms in the CJ .II’S procedural nota-
t ion, and the. code would have been obscure as comparccl
to the rule-based notation,

After some painful clcbug.ging  cxpcricnccs, wc star[ccl ro~l-
tincly tagging each fact with wJlat amounts to it’s geneal-
ogy. Y$7C found this to great Iy case the problcm  of
undcrs[anditvg  exactly how the emitted code c.amc to be as
it was. }/or example, if a C++ function declaration fact is
autonlatictdly  gcncratecl, we Jmt into the function conl-
mcnt field, the name of the rLllc that crcatccl the fact. If a

1. ‘1’hc astute rcaclcr will note wc thus Iicd in the J>rc-
vious J~aragraJ~h rc: facts asserted first, ancl once.

2. CI ,11’S  rules have a lisp-like aJqwarance, but C] ,ll>S
dom J1O[  provide anywhere near full lisp functionality.
WC, would have prcfcmd  it otherwise.

-5-



.,

b’

Latcl rule were  to C.g. add anotllcr  formal  mgumcnt  to the

function dcclmtion, the name of tha( rule would be
appenclccl to the list of mlcs that modified the fact. In this
way a simple (and, wc hnvc found.  quite useful) cxcmtion
trace is provided].

A preliminary version of the ACG did not include the file
i lcrat ion phase. lnstcad, aflcr facls were elaborated, it
attempted to write all oLltput files at the same time. ‘1’his
did not scale WCII, bccamc  both adding capabilities to the
AC(;,  and adding components under the control of lhc
AC(i,  caused the number of output files to incrcasc. Wc
soon rcac.hcd a point where the opcrat  ing systcm could not
suppori the nllmbcr  of sin]ultancous] y opened fi Ics that the
A(Xi required. We. then in~plcmcntcd a file iteration
schcm, whereby only a few files arc opened at any onc
t imc.

We were conccrmd  that it would be difficult to atguc the.
correct ncss of the ACG. ‘J ‘bough wc col~jcchlrcd that most
errors would cause subscqucnl compilation or linking fai 1-
lures and thus could not threaten the qLlality of the cxcmlt -
ablc code, they cerlainly could prove difficult to find and
fiX.  WC  V’CIC thllS lllOtiVatCd  tO StI’LICtLll’C  J’LIICS SLIC.h  tha[

errors wmc Jikc.Jy 10 be avoided, and if not, so they could
be c.asily idcntificcl  and fixed.

CO$J’ ANAl >Ym

‘]’hc  AC(i  is showJI to have saved about 2(J work-months,
worth about $300K. ‘J’hc savings is increasing with time.
‘I”hc total investment in the ACG was about two work-
JllOJl[hS.

cost  to build thc&C~

‘1’hc fi rst version of the ACG was created by the author
over a period of about two weeks in car] y 1994. After
some months of usage, it was conlJ~k.tc.Jy  rcwfit tcn in
November 1994 by the aut}lor in another tJ]rcc weeks,
rcsu]ting  in the system described in this paper. Minor
improvclncmts and additions Jlavc bum made since then.
‘J”hc total invcslmcnt, including sLlbscqucnl maintenance,
is about two work-months.

Cm@tvim.s  fromussdl=

As of early IXxxmbcr J995, ZII)SIM consists of a total of
] 47K1 ,()(: of COdC,  thus:

53KI  ,(W automatically gcncratcd by the ACG.

74KI ,OC manually written.

20KI  ,(X rccycJcd.

1. III rctrosJwcl wc S}1OU1CJ have made SUCJ1 trace infor-
mation an explicit Jkld of each fact, ralhcr than use.
the. ad Jmc mc[hod prcsen!cd  J~crc.

]gnorc the rccyclcd  code and assmnc. that all code that is
now automatically gcncra[cd  woLlkl J]avc otherwise been
manually written at roughly the same cost as the other
I]lat]tlally-w’ritlc]]  code.

74K1 XX of 7, JI’SIM has been manually written, in about
50 work-nmntJ~s,  thus Jxoductivit y was about J .5K1 ,OC/
work month. ‘lhc A(N accounts for 53KI ,OC of code, 01
about 35 work-months at tba[ same productivity. ‘1’here atc
about J OK I .OC of spcc.ifications. Assume it’s twice as
hard to write a sJ~ccification Jinc as it is a C-t t code Jinc.
‘J’hc, specifications thus took about J 3 work-months to crc-
atc. Since it cost only 2 work-months to crcatc the ACG. it
Jlas savccl about 20 work-months, worth about $33(JK.
llasically,  it rcp]accd at least onc progratnmct.

Savings analysis

l’his section examines tJw strength of the savings argu-
ment made above, and pjovides an intllitivc basis from
which the matginal utility of the ACG may be cvaltla~cd,

‘lhc ACG emits 53Kl .0(; of code based on 10KI ,OC of
specifications. ‘1’hc.  code is specifically intended to appear
more or lCSS as it would if manually written. 1 ;or the sake
of argmncnt,  let’s ms~ln~c a Jinc of sJwcification is twice as
difficult to write as a ]inc of code. ‘1’JIc  ACG thus cffcc-
tivcly rcplaccs (53-21:10=33)  33KI ,OC of code.

Recalling that thcle arc 74KI ,0(; of manuall y-written
code. that means that for each manual K1 .0(; there is (33/
74) 0.45KI  ,OC of effcctivc automatic code (that is to say,
WC’VC already a(ljustcd  for the cost of the specification that
was used to c!catc the code).’1 ‘lms if there were no AC(i,
each programmer wou Id have to write about 1.5 lines of
C++ for each Jinc J1OW written, ‘1’hat  imp]ics that for every
two or three progianl  mcrs now on staff, there wou IcI have
to be another onc J~ircd  to wr’ilc the code now JmdLlcUJ by
the ACG. (iivcn tl]at it only took a cmplc of months to
crcatc the. ACG, tlm savings claim scctns reasonable.

In order for the A(:G to Jlavc no marginal advan[agc.  it is
necessary that the. effort to write the specifications is at
least as great as the effort to write the code that is synthe-
sized from the spccitlcat ions. As there arc 10Klincs of
specification, ancl 54 Klincs of code, that means that the
specification would bavc to be over five times more diffi-
cult to write than the code. (lir cxJx2ricncc is that this is far
from true. In fact each line of specification is probably
about as easy to write as a line of code.

S~~~hlARY———.——

We have J~rcscntcd the motivation for and design of a code
synthcsi~cr  that is in daily mc. It Jmduccs  over a third of
the ncw code in the product, and has proven highly cos[-
cffcctivc, saving about !$300K  so far and Jjroviding more
savings cwcry day.

-6-



“J’JIc coIIc.cp(  of a km] to mllomaticdly  create procdural
cllcc.klists w’asboriliI~Al~ril 1993, at Jitl~sll~lrgcrs il~Alta-
dcna, California, dLlring a lunch-time conversation
bet wccu I the author and 1 M. (icorgc 1 mgcr of the lJniver-
sity of Now Mexico. SubscqLicnt conversations with IIill
Robison  of .ll ‘I. led to the concept ofs ynthcsi~illg code,
rather tlian pmccdure  checklists. ‘J’hc mcmtxrs  of the
ZII’SIM development team provided mnny ideas as to
wh a[ c.odc cou IcI be cf fcdivcl y synthesized.

JUil’liRliNCl’S

Osic.r93 J.K. OstcIhoLIt, AII /tlttt)dw-(io/t  to 7ki
cml 71, AcJdison-Wesley, 1993.

R.a~dow82 A. Ranlow,  R. IIackler, and R. Smaby,
“Au(onlatic code gcnerat  ion steps Llp
productivity”, F;lec(mttic lksigtt, pp.
163-167, l)cccmbcr  1982.

Rilcy9J (i. Riley, “Cl ,11’S:  An lixpcrt System
IIuilding 1’oo1”,  l’tocecdittgs  of (h
7ecllIKd(Igy  2001 Cwtfcrctlcc,  NASA,
1991.

Set liftlJ3 1 ). Ii. Set liff, “Knowledge ReJm.scnta-
tion ancl Reasoning in a Software Syn-
thesis Architecture”, IE1’;E
7rms(lcliotts  ott Sofl}!wre Etlgitwcrit)g.
VO1. ] 8, 110.6, PJ).  523-533, ]une 1992.

lhlgaN17 1). lJngar and R.I\. Smith, “Self ‘J’hc
l’owcr  of Simplicity”, S1(il’I AN
notices, vol. 22, no. 12, l)cccmbcr  1987.

Wicringa92 1). Wicringaa, C. Moore, V. IIarnes,  PM)
cedutv Wrilittg  pritlcij)ols wdprmticcs,
l{altcllc Press, 1992.

Ycllin93 1>.M. Ycllin  ant] Rl~. Strom, “lntcrfaccs,
Protocols. and the Scn~i-Autonlatic
Construct ion of software  AclaJJtors”,
l)rocecdings  oj 001’Sl,A  1994, pp. 176-
190.

-’7-


